Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Compressed Hypothesis Testing: To Mix or Not to Mix? (1609.07528v3)

Published 23 Sep 2016 in cs.IT and math.IT

Abstract: In this paper, we study the problem of determining $k$ anomalous random variables that have different probability distributions from the rest $(n-k)$ random variables. Instead of sampling each individual random variable separately as in the conventional hypothesis testing, we propose to perform hypothesis testing using mixed observations that are functions of multiple random variables. We characterize the error exponents for correctly identifying the $k$ anomalous random variables under fixed time-invariant mixed observations, random time-varying mixed observations, and deterministic time-varying mixed observations. For our error exponent characterization, we introduce the notions of inner conditional Chernoff information and outer conditional Chernoff information. It is demonstrated that mixed observations can strictly improve the error exponents of hypothesis testing, over separate observations of individual random variables. We further characterize the optimal sensing vector maximizing the error exponents, which leads to explicit constructions of the optimal mixed observations in special cases of hypothesis testing for Gaussian random variables. These results show that mixed observations of random variables can reduce the number of required samples in hypothesis testing applications. In order to solve large-scale hypothesis testing problems, we also propose efficient algorithms - LASSO based and message passing based hypothesis testing algorithms.

Citations (2)

Summary

We haven't generated a summary for this paper yet.