Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Stable FDTD Method with Embedded Reduced-Order Models (1609.07114v2)

Published 22 Sep 2016 in cs.CE

Abstract: The computational efficiency of the Finite-Difference Time-Domain (FDTD) method can be significantly reduced by the presence of complex objects with fine features. Small geometrical details impose a fine mesh and a reduced time step, significantly increasing computational cost. Model order reduction has been proposed as a systematic way to generate compact models for complex objects, that one can then instantiate into a main FDTD mesh. However, the stability of FDTD with embedded reduced models remains an open problem. We propose a systematic method to generate reduced models for FDTD domains, and embed them into a main FDTD mesh with guaranteed stability up to the Courant-Friedrichs-Lewy (CFL) limit of the fine mesh. With a simple perturbation technique, the CFL of the whole scheme can be further extended beyond the fine grid's CFL limit. Reduced models can be created for arbitrary domains containing inhomogeneous and lossy materials. Numerical tests confirm the stability of the proposed method, and its potential to accelerate multiscale FDTD simulations.

Citations (10)

Summary

We haven't generated a summary for this paper yet.