Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

How should we evaluate supervised hashing? (1609.06753v3)

Published 21 Sep 2016 in cs.CV

Abstract: Hashing produces compact representations for documents, to perform tasks like classification or retrieval based on these short codes. When hashing is supervised, the codes are trained using labels on the training data. This paper first shows that the evaluation protocols used in the literature for supervised hashing are not satisfactory: we show that a trivial solution that encodes the output of a classifier significantly outperforms existing supervised or semi-supervised methods, while using much shorter codes. We then propose two alternative protocols for supervised hashing: one based on retrieval on a disjoint set of classes, and another based on transfer learning to new classes. We provide two baseline methods for image-related tasks to assess the performance of (semi-)supervised hashing: without coding and with unsupervised codes. These baselines give a lower- and upper-bound on the performance of a supervised hashing scheme.

Citations (86)

Summary

We haven't generated a summary for this paper yet.