Papers
Topics
Authors
Recent
2000 character limit reached

FastBDT: A speed-optimized and cache-friendly implementation of stochastic gradient-boosted decision trees for multivariate classification

Published 20 Sep 2016 in cs.LG | (1609.06119v1)

Abstract: Stochastic gradient-boosted decision trees are widely employed for multivariate classification and regression tasks. This paper presents a speed-optimized and cache-friendly implementation for multivariate classification called FastBDT. FastBDT is one order of magnitude faster during the fitting-phase and application-phase, in comparison with popular implementations in software frameworks like TMVA, scikit-learn and XGBoost. The concepts used to optimize the execution time and performance studies are discussed in detail in this paper. The key ideas include: An equal-frequency binning on the input data, which allows replacing expensive floating-point with integer operations, while at the same time increasing the quality of the classification; a cache-friendly linear access pattern to the input data, in contrast to usual implementations, which exhibit a random access pattern. FastBDT provides interfaces to C/C++, Python and TMVA. It is extensively used in the field of high energy physics by the Belle II experiment.

Citations (31)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.