Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Katz Centrality of Markovian Temporal Networks: Analysis and Optimization (1609.05962v1)

Published 19 Sep 2016 in physics.soc-ph and cs.SI

Abstract: Identifying important nodes in complex networks is a fundamental problem in network analysis. Although a plethora of measures has been proposed to identify important nodes in static (i.e., time-invariant) networks, there is a lack of tools in the context of temporal networks (i.e., networks whose connectivity dynamically changes over time). The aim of this paper is to propose a system-theoretic approach for identifying important nodes in temporal networks. In this direction, we first propose a generalization of the popular Katz centrality measure to the family of Markovian temporal networks using tools from the theory of Markov jump linear systems. We then show that Katz centrality in Markovian temporal networks can be efficiently computed using linear programming. Finally, we propose a convex program for optimizing the Katz centrality of a given node by tuning the weights of the temporal network in a cost-efficient manner. Numerical simulations illustrate the effectiveness of the obtained results.

Citations (4)

Summary

We haven't generated a summary for this paper yet.