Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A simple algorithm for sampling colourings of $G(n,d/n)$ up to Gibbs Uniqueness Threshold (1609.05934v1)

Published 19 Sep 2016 in cs.DM

Abstract: Approximate random $k$-colouring of a graph $G$ is a well studied problem in computer science and statistical physics. It amounts to constructing a $k$-colouring of $G$ which is distributed close to {\em Gibbs distribution} in polynomial time. Here, we deal with the problem when the underlying graph is an instance of Erd\H{o}s-R\'enyi random graph $G(n,d/n)$, where $d$ is a sufficiently large constant. We propose a novel efficient algorithm for approximate random $k$-colouring $G(n,d/n)$ for any $k\geq (1+\epsilon)d$. To be more specific, with probability at least $1-n{-\Omega(1)}$ over the input instances $G(n,d/n)$ and for $k\geq (1+\epsilon)d$, the algorithm returns a $k$-colouring which is distributed within total variation distance $n{-\Omega(1)}$ from the Gibbs distribution of the input graph instance. The algorithm we propose is neither a MCMC one nor inspired by the message passing algorithms proposed by statistical physicists. Roughly the idea is as follows: Initially we remove sufficiently many edges of the input graph. This results in a "simple graph" which can be $k$-coloured randomly efficiently. The algorithm colours randomly this simple graph. Then it puts back the removed edges one by one. Every time a new edge is put back the algorithm updates the colouring of the graph so that the colouring remains random. The performance of the algorithm depends heavily on certain spatial correlation decay properties of the Gibbs distribution.

Citations (11)

Summary

We haven't generated a summary for this paper yet.