Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tensor Completion by Alternating Minimization under the Tensor Train (TT) Model (1609.05587v1)

Published 19 Sep 2016 in cs.NA, cs.IT, cs.LG, and math.IT

Abstract: Using the matrix product state (MPS) representation of tensor train decompositions, in this paper we propose a tensor completion algorithm which alternates over the matrices (tensors) in the MPS representation. This development is motivated in part by the success of matrix completion algorithms which alternate over the (low-rank) factors. We comment on the computational complexity of the proposed algorithm and numerically compare it with existing methods employing low rank tensor train approximation for data completion as well as several other recently proposed methods. We show that our method is superior to existing ones for a variety of real settings.

Citations (44)

Summary

We haven't generated a summary for this paper yet.