Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Best polynomial approximation on the unit ball (1609.05515v2)

Published 18 Sep 2016 in math.CA

Abstract: Let $E_n(f)\mu$ be the error of best approximation by polynomials of degree at most $n$ in the space $L2(\varpi\mu, \mathbb{B}d)$, where $\mathbb{B}d$ is the unit ball in $\mathbb{R}d$ and $\varpi_\mu(x) = (1-|x|2)\mu$ for $\mu > -1$. Our main result shows that, for $s \in \mathbb{N}$, $$ E_n(f)\mu \le c n{-2s}[E{n-2s}(\Deltas f){\mu+2s} + E{n}(\Delta_0s f)_{\mu}], $$ where $\Delta$ and $\Delta_0$ are the Laplace and Laplace-Beltrami operators, respectively. We also derive a bound when the right hand side contains odd order derivatives.

Summary

We haven't generated a summary for this paper yet.