Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Information Theoretic Limits of Data Shuffling for Distributed Learning (1609.05181v1)

Published 16 Sep 2016 in cs.IT, cs.DC, cs.LG, and math.IT

Abstract: Data shuffling is one of the fundamental building blocks for distributed learning algorithms, that increases the statistical gain for each step of the learning process. In each iteration, different shuffled data points are assigned by a central node to a distributed set of workers to perform local computations, which leads to communication bottlenecks. The focus of this paper is on formalizing and understanding the fundamental information-theoretic trade-off between storage (per worker) and the worst-case communication overhead for the data shuffling problem. We completely characterize the information theoretic trade-off for $K=2$, and $K=3$ workers, for any value of storage capacity, and show that increasing the storage across workers can reduce the communication overhead by leveraging coding. We propose a novel and systematic data delivery and storage update strategy for each data shuffle iteration, which preserves the structural properties of the storage across the workers, and aids in minimizing the communication overhead in subsequent data shuffling iterations.

Citations (39)

Summary

We haven't generated a summary for this paper yet.