Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Grammatical Templates: Improving Text Difficulty Evaluation for Language Learners (1609.05180v2)

Published 16 Sep 2016 in cs.CL and cs.AI

Abstract: Language students are most engaged while reading texts at an appropriate difficulty level. However, existing methods of evaluating text difficulty focus mainly on vocabulary and do not prioritize grammatical features, hence they do not work well for language learners with limited knowledge of grammar. In this paper, we introduce grammatical templates, the expert-identified units of grammar that students learn from class, as an important feature of text difficulty evaluation. Experimental classification results show that grammatical template features significantly improve text difficulty prediction accuracy over baseline readability features by 7.4%. Moreover, we build a simple and human-understandable text difficulty evaluation approach with 87.7% accuracy, using only 5 grammatical template features.

Citations (12)

Summary

We haven't generated a summary for this paper yet.