Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Geometric Ergodicity of Gibbs Samplers in Bayesian Penalized Regression Models (1609.04057v2)

Published 13 Sep 2016 in math.ST, stat.CO, and stat.TH

Abstract: We consider three Bayesian penalized regression models and show that the respective deterministic scan Gibbs samplers are geometrically ergodic regardless of the dimension of the regression problem. We prove geometric ergodicity of the Gibbs samplers for the Bayesian fused lasso, the Bayesian group lasso, and the Bayesian sparse group lasso. Geometric ergodicity along with a moment condition results in the existence of a Markov chain central limit theorem for Monte Carlo averages and ensures reliable output analysis. Our results of geometric ergodicity allow us to also provide default starting values for the Gibbs samplers.

Summary

We haven't generated a summary for this paper yet.