Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the double-affine Bruhat order: the $ε=1$ conjecture and classification of covers in ADE type (1609.03653v1)

Published 13 Sep 2016 in math.RT

Abstract: For any Kac-Moody group $\mathbf{G}$, we prove that the Bruhat order on the semidirect product of the Weyl group and the Tits cone for $\mathbf{G}$ is strictly compatible with a $\mathbb{Z}$-valued length function. We conjecture in general and prove for $\mathbf{G}$ of affine ADE type that the Bruhat order is graded by this length function. We also formulate and discuss conjectures relating the length function to intersections of "double-affine Schubert varieties."

Summary

We haven't generated a summary for this paper yet.