Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Importance sampling of heavy-tailed iterated random functions (1609.03182v1)

Published 11 Sep 2016 in math.PR

Abstract: We consider a stochastic recurrence equation of the form $Z_{n+1} = A_{n+1} Z_n+B_{n+1}$, where $\mathbb{E}[\log A_1]<0$, $\mathbb{E}[\log+ B_1]<\infty$ and ${(A_n,B_n)}{n\in\mathbb{N}}$ is an i.i.d. sequence of positive random vectors. The stationary distribution of this Markov chain can be represented as the distribution of the random variable $Z \triangleq \sum{n=0}\infty B_{n+1}\prod_{k=1}nA_k$. Such random variables can be found in the analysis of probabilistic algorithms or financial mathematics, where $Z$ would be called a stochastic perpetuity. If one interprets $-\log A_n$ as the interest rate at time $n$, then $Z$ is the present value of a bond that generates $B_n$ unit of money at each time point $n$. We are interested in estimating the probability of the rare event ${Z>x}$, when $x$ is large; we provide a consistent simulation estimator using state-dependent importance sampling for the case, where $\log A_1$ is heavy-tailed and the so-called Cram\'{e}r condition is not satisfied. Our algorithm leads to an estimator for $P(Z>x)$. We show that under natural conditions, our estimator is strongly efficient. Furthermore, we extend our method to the case, where ${Z_n}{n\in\mathbb{N}}$ is defined via the recursive formula $Z{n+1}=\Psi_{n+1}(Z_n)$ and ${\Psi_n}_{n\in\mathbb{N}}$ is a sequence of i.i.d. random Lipschitz functions.

Summary

We haven't generated a summary for this paper yet.