Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Rough path metrics on a Besov--Nikolskii type scale (1609.03132v2)

Published 11 Sep 2016 in math.PR and math.CA

Abstract: It is known, since the seminal work [T. Lyons, Differential equations driven by rough signals, Rev. Mat. Iberoamericana, 14 (1998)], that the solution map associated to a controlled differential equation is locally Lipschitz continuous in $q$-variation resp. $1/q$-H\"{o}lder type metrics on the space of rough paths, for any regularity $1/q \in (0,1]$. We extend this to a new class of Besov-Nikolskii-type metrics, with arbitrary regularity $1/q\in (0,1]$ and integrability $p\in [ q,\infty ]$, where the case $p\in { q,\infty } $ corresponds to the known cases. Interestingly, the result is obtained as consequence of known $q$-variation rough path estimates.

Summary

We haven't generated a summary for this paper yet.