Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distribution of Shapes of orthogonal Lattices (1609.03070v1)

Published 10 Sep 2016 in math.DS and math.NT

Abstract: It was recently shown by Aka, Einsiedler and Shapira that if d>2, the set of primitive vectors on large spheres when projected to the d-1-dimensional sphere coupled with the shape of the lattice in their orthogonal complement equidistribute in the product space of the sphere with the space of shapes of d-1-dimensional lattices. Specifically, for d=3,4,5 some congruence conditions are assumed. By using recent advances in the theory of unipotent flows, we effectivize the dynamical proof to remove those conditions for d=4,5. It also follows that equidistribution takes place with a polynomial error term with respect to the length of the primitive points.

Summary

We haven't generated a summary for this paper yet.