Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Energy Transparency for Deeply Embedded Programs (1609.02193v3)

Published 25 Aug 2016 in cs.OH

Abstract: Energy transparency is a concept that makes a program's energy consumption visible, from hardware up to software, through the different system layers. Such transparency can enable energy optimizations at each layer and between layers, and help both programmers and operating systems make energy-aware decisions. In this paper, we focus on deeply embedded devices, typically used for Internet of Things (IoT) applications, and demonstrate how to enable energy transparency through existing Static Resource Analysis (SRA) techniques and a new target-agnostic profiling technique, without hardware energy measurements. Our novel mapping technique enables software energy consumption estimations at a higher level than the Instruction Set Architecture (ISA), namely the LLVM Intermediate Representation (IR) level, and therefore introduces energy transparency directly to the LLVM optimizer. We apply our energy estimation techniques to a comprehensive set of benchmarks, including single- and also multi-threaded embedded programs from two commonly used concurrency patterns, task farms and pipelines. Using SRA, our LLVM IR results demonstrate a high accuracy with a deviation in the range of 1% from the ISA SRA. Our profiling technique captures the actual energy consumption at the LLVM IR level with an average error of 3%.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Kyriakos Georgiou (19 papers)
  2. Steve Kerrison (14 papers)
  3. Zbigniew Chamski (5 papers)
  4. Kerstin Eder (70 papers)
Citations (26)

Summary

We haven't generated a summary for this paper yet.