Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Polyp Detection and Segmentation from Video Capsule Endoscopy: A Review (1609.01915v1)

Published 7 Sep 2016 in cs.CV

Abstract: Video capsule endoscopy (VCE) is used widely nowadays for visualizing the gastrointestinal (GI) tract. Capsule endoscopy exams are prescribed usually as an additional monitoring mechanism and can help in identifying polyps, bleeding, etc. To analyze the large scale video data produced by VCE exams automatic image processing, computer vision, and learning algorithms are required. Recently, automatic polyp detection algorithms have been proposed with various degrees of success. Though polyp detection in colonoscopy and other traditional endoscopy procedure based images is becoming a mature field, due to its unique imaging characteristics detecting polyps automatically in VCE is a hard problem. We review different polyp detection approaches for VCE imagery and provide systematic analysis with challenges faced by standard image processing and computer vision methods.

Citations (59)

Summary

We haven't generated a summary for this paper yet.