Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Full adaptation to smoothness using randomly truncated series priors with Gaussian coefficients and inverse gamma scaling (1609.01577v2)

Published 6 Sep 2016 in math.ST and stat.TH

Abstract: We study random series priors for estimating a functional parameter (f\in L2[0,1]). We show that with a series prior with random truncation, Gaussian coefficients, and inverse gamma multiplicative scaling, it is possible to achieve posterior contraction at optimal rates and adaptation to arbitrary degrees of smoothness. We present general results that can be combined with existing rate of contraction results for various nonparametric estimation problems. We give concrete examples for signal estimation in white noise and drift estimation for a one-dimensional SDE.

Summary

We haven't generated a summary for this paper yet.