Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Decomposition of Jacobian varieties of curves with dihedral actions via equisymmetric stratification (1609.01562v1)

Published 6 Sep 2016 in math.AG

Abstract: Given a compact Riemann surface $X$ with an action of a finite group $G$, the group algebra Q[G] provides an isogenous decomposition of its Jacobian variety $JX$, known as the group algebra decomposition of $JX$. We consider the set of equisymmetric Riemann surfaces $\mathcal{M}(2n-1, D_{2n}, \theta)$ for all $n\geq 2$. We study the group algebra decomposition of the Jacobian $JX$ of every curve $X\in \mathcal{M}(2n-1, D_{2n},\theta)$ for all admissible actions, and we provide affine models for them. We use the topological equivalence of actions on the curves to obtain facts regarding its Jacobians. We describe some of the factors of $JX$ as Jacobian (or Prym) varieties of intermediate coverings. Finally, we compute the dimension of the corresponding Shimura domains.

Summary

We haven't generated a summary for this paper yet.