Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Combinatorial Repairability for Threshold Schemes (1609.01240v1)

Published 5 Sep 2016 in math.CO and cs.CR

Abstract: In this paper, we consider methods whereby a subset of players in a $(k,n)$-threshold scheme can "repair" another player's share in the event that their share has been lost or corrupted. This will take place without the participation of the dealer who set up the scheme. The repairing protocol should not compromise the (unconditional) security of the threshold scheme, and it should be efficient, where efficiency is measured in terms of the amount of information exchanged during the repairing process. We study two approaches to repairing. The first method is based on the "enroLLMent protocol" from \cite{NSG} which was originally developed to add a new player to a threshold scheme (without the participation of the dealer) after the scheme was set up. The second method distributes "multiple shares" to each player, as defined by a suitable combinatorial design. This method results in larger shares, but lower communication complexity, as compared to the first method.

Citations (14)

Summary

We haven't generated a summary for this paper yet.