Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic Bouncy Particle Sampler (1609.00770v3)

Published 3 Sep 2016 in stat.CO and stat.ML

Abstract: We introduce a novel stochastic version of the non-reversible, rejection-free Bouncy Particle Sampler (BPS), a Markov process whose sample trajectories are piecewise linear. The algorithm is based on simulating first arrival times in a doubly stochastic Poisson process using the thinning method, and allows efficient sampling of Bayesian posteriors in big datasets. We prove that in the BPS no bias is introduced by noisy evaluations of the log-likelihood gradient. On the other hand, we argue that efficiency considerations favor a small, controllable bias in the construction of the thinning proposals, in exchange for faster mixing. We introduce a simple regression-based proposal intensity for the thinning method that controls this trade-off. We illustrate the algorithm in several examples in which it outperforms both unbiased, but slowly mixing stochastic versions of BPS, as well as biased stochastic gradient-based samplers.

Citations (32)

Summary

We haven't generated a summary for this paper yet.