Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Correlation with Human Judgments by Integrating Semantic Similarity with Second--Order Vectors (1609.00559v2)

Published 2 Sep 2016 in cs.CL

Abstract: Vector space methods that measure semantic similarity and relatedness often rely on distributional information such as co--occurrence frequencies or statistical measures of association to weight the importance of particular co--occurrences. In this paper, we extend these methods by incorporating a measure of semantic similarity based on a human curated taxonomy into a second--order vector representation. This results in a measure of semantic relatedness that combines both the contextual information available in a corpus--based vector space representation with the semantic knowledge found in a biomedical ontology. Our results show that incorporating semantic similarity into a second order co--occurrence matrices improves correlation with human judgments for both similarity and relatedness, and that our method compares favorably to various different word embedding methods that have recently been evaluated on the same reference standards we have used.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Bridget T. McInnes (5 papers)
  2. Ted Pedersen (16 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.