Papers
Topics
Authors
Recent
Search
2000 character limit reached

Inference in a bimodal Birnbaum-Saunders model

Published 1 Sep 2016 in stat.CO | (1609.00339v2)

Abstract: We address the issue of performing inference on the parameters that index a bimodal extension of the Birnbaum-Saunders distribution (BS). We show that maximum likelihood point estimation can be problematic since the standard nonlinear optimization algorithms may fail to converge. To deal with this problem, we penalize the log-likelihood function. The numerical evidence we present show that maximum likelihood estimation based on such penalized function is made considerably more reliable. We also consider hypothesis testing inference based on the penalized log-likelihood function. In particular, we consider likelihood ratio, signed likelihood ratio, score and Wald tests. Bootstrap-based testing inference is also considered. We use a nonnested hypothesis test to distinguish between two bimodal BS laws. We derive analytical corrections to some tests. Monte Carlo simulation results and empirical applications are presented and discussed.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.