Local average height distribution of fluctuating interfaces (1609.00264v2)
Abstract: Height fluctuations of growing surfaces can be characterized by the probability distribution of height in a spatial point at a finite time. Recently there has been spectacular progress in the studies of this quantity for the Kardar-Parisi-Zhang (KPZ) equation in $1+1$ dimensions. Here we notice that, at or above a critical dimension, the finite-time one-point height distribution is ill-defined in a broad class of linear surface growth models, unless the model is regularized at small scales. The regularization via a system-dependent small-scale cutoff leads to a partial loss of universality. As a possible alternative, we introduce a \emph{local average height}. For the linear models the probability density of this quantity is well-defined in any dimension. The weak-noise theory (WNT) for these models yields the "optimal path" of the interface conditioned on a non-equilibrium fluctuation of the local average height. As an illustration, we consider the conserved Edwards-Wilkinson (EW) equation, where, without regularization, the finite-time one-point height distribution is ill-defined in all physical dimensions. We also determine the optimal path of the interface in a closely related problem of the finite-time \emph{height-difference} distribution for the non-conserved EW equation in $1+1$ dimension. Finally, we discuss a UV catastrophe in the finite-time one-point distribution of height in the (non-regularized) KPZ equation in $2+1$ dimensions.