Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Mathematical Framework for Feature Selection from Real-World Data with Non-Linear Observations (1608.08852v1)

Published 31 Aug 2016 in stat.ML, cs.LG, math.ST, and stat.TH

Abstract: In this paper, we study the challenge of feature selection based on a relatively small collection of sample pairs ${(x_i, y_i)}{1 \leq i \leq m}$. The observations $y_i \in \mathbb{R}$ are thereby supposed to follow a noisy single-index model, depending on a certain set of signal variables. A major difficulty is that these variables usually cannot be observed directly, but rather arise as hidden factors in the actual data vectors $x_i \in \mathbb{R}d$ (feature variables). We will prove that a successful variable selection is still possible in this setup, even when the applied estimator does not have any knowledge of the underlying model parameters and only takes the 'raw' samples ${(x_i, y_i)}{1 \leq i \leq m}$ as input. The model assumptions of our results will be fairly general, allowing for non-linear observations, arbitrary convex signal structures as well as strictly convex loss functions. This is particularly appealing for practical purposes, since in many applications, already standard methods, e.g., the Lasso or logistic regression, yield surprisingly good outcomes. Apart from a general discussion of the practical scope of our theoretical findings, we will also derive a rigorous guarantee for a specific real-world problem, namely sparse feature extraction from (proteomics-based) mass spectrometry data.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Martin Genzel (22 papers)
  2. Gitta Kutyniok (120 papers)
Citations (13)

Summary

We haven't generated a summary for this paper yet.