Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Toward computerized efficient estimation in infinite-dimensional models (1608.08717v1)

Published 31 Aug 2016 in math.ST and stat.TH

Abstract: Despite the risk of misspecification they are tied to, parametric models continue to be used in statistical practice because they are accessible to all. In particular, efficient estimation procedures in parametric models are simple to describe and implement. Unfortunately, the same cannot be said of semiparametric and nonparametric models. While the latter often reflect the level of available scientific knowledge more appropriately, performing efficient inference in these models is generally challenging. The efficient influence function is a key analytic object from which the construction of asymptotically efficient estimators can potentially be streamlined. However, the theoretical derivation of the efficient influence function requires specialized knowledge and is often a difficult task, even for experts. In this paper, we propose and discuss a numerical procedure for approximating the efficient influence function. The approach generalizes the simple nonparametric procedures described recently by Frangakis et al. (2015) and Luedtke et al. (2015) to arbitrary models. We present theoretical results to support our proposal, and also illustrate the method in the context of two examples. The proposed approach is an important step toward automating efficient estimation in general statistical models, thereby rendering the use of realistic models in statistical analyses much more accessible.

Summary

We haven't generated a summary for this paper yet.