Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving the Correlation Lower Bound for Simultaneous Orthogonal Matching Pursuit (1608.08454v2)

Published 30 Aug 2016 in cs.IT and math.IT

Abstract: The simultaneous orthogonal matching pursuit (SOMP) algorithm aims to find the joint support of a set of sparse signals acquired under a multiple measurement vector model. Critically, the analysis of SOMP depends on the maximal inner product of any atom of a suitable dictionary and the current signal residual, which is formed by the subtraction of previously selected atoms. This inner product, or correlation, is a key metric to determine the best atom to pick at each iteration. This paper provides, for each iteration of SOMP, a novel lower bound of the aforementioned metric for the atoms belonging to the correct and common joint support of the multiple signals. Although the bound is obtained for the noiseless case, its main purpose is to intervene in noisy analyses of SOMP. Finally, it is shown for specific signal patterns that the proposed bound outperforms state-of-the-art results for SOMP, and orthogonal matching pursuit (OMP) as a special case.

Citations (13)

Summary

We haven't generated a summary for this paper yet.