Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Instability in nonlinear Schrödinger breathers (1608.08169v3)

Published 29 Aug 2016 in math.AP, math-ph, math.MP, and nlin.PS

Abstract: We consider the \emph{focusing} nonlinear Schr\"odinger equation posed on the one dimensional line, with nonzero background condition at spatial infinity, given by a homogeneous plane wave. For this problem of physical interest, we study the initial value problem for perturbations of the background wave in Sobolev spaces. It is well-known that the associated linear dynamics for this problem describes a phenomenon known in the literature as \emph{modulational instability}, also recently related to the emergence of \emph{rogue waves} in ocean dynamics. In qualitative terms, small perturbations of the background state increase its size exponentially in time. In this paper we show that, even if there is no time decay for the linear dynamics due to the modulationally unstable regime, the equation is still locally well-posed in $Hs$, $s>\frac12$. We apply this result to give a rigorous proof of the unstable character of two well-known NLS solutions: the Peregrine and Kuznetsov-Ma breathers.

Summary

We haven't generated a summary for this paper yet.