Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Coloring Jordan regions and curves (1608.08159v3)

Published 29 Aug 2016 in math.CO and cs.CG

Abstract: A Jordan region is a subset of the plane that is homeomorphic to a closed disk. Consider a family $\mathcal{F}$ of Jordan regions whose interiors are pairwise disjoint, and such that any two Jordan regions intersect in at most one point. If any point of the plane is contained in at most $k$ elements of $\mathcal{F}$ (with $k$ sufficiently large), then we show that the elements of $\mathcal{F}$ can be colored with at most $k+1$ colors so that intersecting Jordan regions are assigned distinct colors. This is best possible and answers a question raised by Reed and Shepherd in 1996. As a simple corollary, we also obtain a positive answer to a problem of Hlin\v{e}n\'y (1998) on the chromatic number of contact systems of strings. We also investigate the chromatic number of families of touching Jordan curves. This can be used to bound the ratio between the maximum number of vertex-disjoint directed cycles in a planar digraph, and its fractional counterpart.

Citations (4)

Summary

We haven't generated a summary for this paper yet.