Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Debugging of Markov Decision Processes (MDPs) Models (1608.07881v1)

Published 29 Aug 2016 in cs.SE and cs.LO

Abstract: In model checking, a counterexample is considered as a valuable tool for debugging. In Probabilistic Model Checking (PMC), counterexample generation has a quantitative aspect. The counterexample in PMC is a set of paths in which a path formula holds, and their accumulative probability mass violates the probability threshold. However, understanding the counterexample is not an easy task. In this paper we address the task of counterexample analysis for Markov Decision Processes (MDPs). We propose an aided-diagnostic method for probabilistic counterexamples based on the notions of causality, responsibility and blame. Given a counterexample for a Probabilistic CTL (PCTL) formula that does not hold over an MDP model, this method guides the user to the most relevant parts of the model that led to the violation.

Citations (2)

Summary

We haven't generated a summary for this paper yet.