Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Can one see the shape of a network? (1608.07838v2)

Published 28 Aug 2016 in math.CO and cs.DM

Abstract: Traditionally, network analysis is based on local properties of vertices, like their degree or clustering, and their statistical behavior across the network in question. This paper develops an approach which is different in two respects. We investigate edge-based properties, and we define global characteristics of networks directly. The latter will provide our affirmative answer to the question raised in the title. More concretely, we start with Forman's notion of the Ricci curvature of a graph, or more generally, a polyhedral complex. This will allow us to pass from a graph as representing a network to a polyhedral complex for instance by filling in triangles into connected triples of edges and to investigate the resulting effect on the curvature. This is insightful for two reasons: First, we can define a curvature flow in order to asymptotically simplify a network and reduce it to its essentials. Second, using a construction of Bloch, which yields a discrete Gauss-Bonnet theorem, we have the Euler characteristic of a network as a global characteristic. These two aspects beautifully merge in the sense that the asymptotic properties of the curvature flow are indicated by that Euler characteristic.

Citations (14)

Summary

We haven't generated a summary for this paper yet.