Existence and properties of the Navier-Stokes equations
Abstract: A proof of existence, uniqueness and smoothness of the Navier-Stokes equations is an actual problem, which solution is important for different branches of science. The subject of this study is obtaining the smooth and unique solutions of the three-dimension Stokes-Navier equations for the initial and boundary value problem. The analysis shows that there exist no viscous solutions of the Navier-Stokes equations in three dimensions. The reason is the insufficient capability of the divergence-free velocity field. It is necessary to modify the Navier-Stokes equations for obtaining the desirable solutions. The modified equations describe a three-dimension flow of incompressible fluid which sticks to a body surface. The equation solutions show the resonant blowup of the laminar flow, laminar-turbulent transition, the fluid detachment that opens the way to solve the magnetic dynamo problem.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.