Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Elementary polytopes with high lift-and-project ranks for strong positive semidefinite operators (1608.07647v1)

Published 27 Aug 2016 in math.OC, cs.CC, cs.DM, cs.DS, and math.CO

Abstract: We consider operators acting on convex subsets of the unit hypercube. These operators are used in constructing convex relaxations of combinatorial optimization problems presented as a 0,1 integer programming problem or a 0,1 polynomial optimization problem. Our focus is mostly on operators that, when expressed as a lift-and-project operator, involve the use of semidefiniteness constraints in the lifted space, including operators due to Lasserre and variants of the Sherali--Adams and Bienstock--Zuckerberg operators. We study the performance of these semidefinite-optimization-based lift-and-project operators on some elementary polytopes --- hypercubes that are chipped (at least one vertex of the hypercube removed by intersection with a closed halfspace) or cropped (all $2n$ vertices of the hypercube removed by intersection with $2n$ closed halfspaces) to varying degrees of severity $\rho$. We prove bounds on $\rho$ where these operators would perform badly on the aforementioned examples. We also show that the integrality gap of the chipped hypercube is invariant under the application of several lift-and-project operators of varying strengths.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Yu Hin Au (10 papers)
  2. Levent Tunçel (34 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.