Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bregman Cost for Non-Gaussian Noise (1608.07483v1)

Published 26 Aug 2016 in math.NA

Abstract: One of the tasks of the Bayesian inverse problem is to find a good estimate based on the posterior probability density. The most common point estimators are the conditional mean (CM) and maximum a posteriori (MAP) estimates, which correspond to the mean and the mode of the posterior, respectively. From a theoretical point of view it has been argued that the MAP estimate is only in an asymptotic sense a Bayes estimator for the uniform cost function, while the CM estimate is a Bayes estimator for the means squared cost function. Recently, it has been proven that the MAP estimate is a proper Bayes estimator for the Bregman cost if the image is corrupted by Gaussian noise. In this work we extend this result to other noise models with log-concave likelihood density, by introducing two related Bregman cost functions for which the CM and the MAP estimates are proper Bayes estimators. Moreover, we also prove that the CM estimate outperforms the MAP estimate, when the error is measured in a certain Bregman distance, a result previously unknown also in the case of additive Gaussian noise.

Summary

We haven't generated a summary for this paper yet.