Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximizing Influence in an Ising Network: A Mean-Field Optimal Solution (1608.06850v2)

Published 24 Aug 2016 in cond-mat.dis-nn, cs.SI, and physics.soc-ph

Abstract: Influence maximization in social networks has typically been studied in the context of contagion models and irreversible processes. In this paper, we consider an alternate model that treats individual opinions as spins in an Ising system at dynamic equilibrium. We formalize the \textit{Ising influence maximization} problem, which has a natural physical interpretation as maximizing the magnetization given a budget of external magnetic field. Under the mean-field (MF) approximation, we present a gradient ascent algorithm that uses the susceptibility to efficiently calculate local maxima of the magnetization, and we develop a number of sufficient conditions for when the MF magnetization is concave and our algorithm converges to a global optimum. We apply our algorithm on random and real-world networks, demonstrating, remarkably, that the MF optimal external fields (i.e., the external fields which maximize the MF magnetization) shift from focusing on high-degree individuals at high temperatures to focusing on low-degree individuals at low temperatures. We also establish a number of novel results about the structure of steady-states in the ferromagnetic MF Ising model on general graph topologies, which are of independent interest.

Citations (24)

Summary

We haven't generated a summary for this paper yet.