Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Completeness for a First-order Abstract Separation Logic (1608.06729v1)

Published 24 Aug 2016 in cs.LO

Abstract: Existing work on theorem proving for the assertion language of separation logic (SL) either focuses on abstract semantics which are not readily available in most applications of program verification, or on concrete models for which completeness is not possible. An important element in concrete SL is the points-to predicate which denotes a singleton heap. SL with the points-to predicate has been shown to be non-recursively enumerable. In this paper, we develop a first-order SL, called FOASL, with an abstracted version of the points-to predicate. We prove that FOASL is sound and complete with respect to an abstract semantics, of which the standard SL semantics is an instance. We also show that some reasoning principles involving the points-to predicate can be approximated as FOASL theories, thus allowing our logic to be used for reasoning about concrete program verification problems. We give some example theories that are sound with respect to different variants of separation logics from the literature, including those that are incompatible with Reynolds's semantics. In the experiment we demonstrate our FOASL based theorem prover which is able to handle a large fragment of separation logic with heap semantics as well as non-standard semantics.

Citations (6)

Summary

We haven't generated a summary for this paper yet.