Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

$L_p$-norm regularization algorithms for optimization over permutation matrices (1608.06695v2)

Published 24 Aug 2016 in math.OC

Abstract: Optimization problems over permutation matrices appear widely in facility layout, chip design, scheduling, pattern recognition, computer vision, graph matching, etc. Since this problem is NP-hard due to the combinatorial nature of permutation matrices, we relax the variable to be the more tractable doubly stochastic matrices and add an $L_p$-norm ($0 < p < 1$) regularization term to the objective function. The optimal solutions of the $L_p$-regularized problem are the same as the original problem if the regularization parameter is sufficiently large. A lower bound estimation of the nonzero entries of the stationary points and some connections between the local minimizers and the permutation matrices are further established. Then we propose an $L_p$ regularization algorithm with local refinements. The algorithm approximately solves a sequence of $L_p$ regularization subproblems by the projected gradient method using a nonmontone line search with the Barzilai-Borwein step sizes. Its performance can be further improved if it is combined with certain local search methods, the cutting plane techniques as well as a new negative proximal point scheme. Extensive numerical results on QAPLIB and the bandwidth minimization problem show that our proposed algorithms can often find reasonably high quality solutions within a competitive amount of time.

Summary

We haven't generated a summary for this paper yet.