Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Conversion Methods, Block Triangularization, and Structural Analysis of Differential-Algebraic Equation Systems (1608.06693v1)

Published 24 Aug 2016 in cs.SC and cs.NA

Abstract: In a previous article, the authors developed two conversion methods to improve the $\Sigma$-method for structural analysis (SA) of differential-algebraic equations (DAEs). These methods reformulate a DAE on which the $\Sigma$-method fails into an equivalent problem on which this SA is more likely to succeed with a generically nonsingular Jacobian. The basic version of these methods processes the DAE as a whole. This article presents the block version that exploits block triangularization of a DAE. Using a block triangular form of a Jacobian sparsity pattern, we identify which diagonal blocks of the Jacobian are identically singular and then perform a conversion on each such block. This approach improves the efficiency of finding a suitable conversion for fixing SA's failures. All of our conversion methods can be implemented in a computer algebra system so that every conversion can be automated.

Citations (1)

Summary

We haven't generated a summary for this paper yet.