Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Clustering and Embedding Mixture Manifolds using a Low Rank Neighborhood Approach (1608.06669v3)

Published 23 Aug 2016 in cs.CV

Abstract: Samples from intimate (non-linear) mixtures are generally modeled as being drawn from a smooth manifold. Scenarios where the data contains multiple intimate mixtures with some constituent materials in common can be thought of as manifolds which share a boundary. Two important steps in the processing of such data are (i) to identify (cluster) the different mixture-manifolds present in the data and (ii) to eliminate the non-linearities present the data by mapping each mixture-manifold into some low-dimensional euclidean space (embedding). Manifold clustering and embedding techniques appear to be an ideal tool for this task, but the present state-of-the-art algorithms perform poorly for hyperspectral data, particularly in the embedding task. We propose a novel reconstruction-based algorithm for improved clustering and embedding of mixture-manifolds. The algorithms attempts to reconstruct each target-point as an affine combination of its nearest neighbors with an additional rank penalty on the neighborhood to ensure that only neighbors on the same manifold as the target-point are used in the reconstruction. The reconstruction matrix generated by using this technique is block-diagonal and can be used for clustering (using spectral clustering) and embedding. The improved performance of the algorithms vis-a-vis its competitors is exhibited on a variety of simulated and real mixture datasets.

Citations (3)

Summary

We haven't generated a summary for this paper yet.