Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data Centroid Based Multi-Level Fuzzy Min-Max Neural Network (1608.05513v2)

Published 19 Aug 2016 in cs.AI and cs.NE

Abstract: Recently, a multi-level fuzzy min max neural network (MLF) was proposed, which improves the classification accuracy by handling an overlapped region (area of confusion) with the help of a tree structure. In this brief, an extension of MLF is proposed which defines a new boundary region, where the previously proposed methods mark decisions with less confidence and hence misclassification is more frequent. A methodology to classify patterns more accurately is presented. Our work enhances the testing procedure by means of data centroids. We exhibit an illustrative example, clearly highlighting the advantage of our approach. Results on standard datasets are also presented to evidentially prove a consistent improvement in the classification rate.

Summary

We haven't generated a summary for this paper yet.