Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Arithmetic progressions in multiplicative groups of finite fields (1608.05449v2)

Published 18 Aug 2016 in math.NT

Abstract: Let $G$ be a multiplicative subgroup of the prime field $\mathbb F_p$ of size $|G|> p{1-\kappa}$ and $r$ an arbitrarily fixed positive integer. Assuming $\kappa=\kappa(r)>0$ and $p$ large enough, it is shown that any proportional subset $A\subset G$ contains non-trivial arithmetic progressions of length $r$. The main ingredient is the Szemer\'{e}di-Green-Tao theorem.

Summary

We haven't generated a summary for this paper yet.