Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Successive Convexification of Non-Convex Optimal Control Problems and Its Convergence Properties (1608.05133v3)

Published 17 Aug 2016 in math.OC

Abstract: This paper presents an algorithm to solve non-convex optimal control problems, where non-convexity can arise from nonlinear dynamics, and non-convex state and control constraints. This paper assumes that the state and control constraints are already convex or convexified, the proposed algorithm convexifies the nonlinear dynamics, via a linearization, in a successive manner. Thus at each succession, a convex optimal control subproblem is solved. Since the dynamics are linearized and other constraints are convex, after a discretization, the subproblem can be expressed as a finite dimensional convex programming subproblem. Since convex optimization problems can be solved very efficiently, especially with custom solvers, this subproblem can be solved in time-critical applications, such as real-time path planning for autonomous vehicles. Several safe-guarding techniques are incorporated into the algorithm, namely virtual control and trust regions, which add another layer of algorithmic robustness. A convergence analysis is presented in continuous- time setting. By doing so, our convergence results will be independent from any numerical schemes used for discretization. Numerical simulations are performed for an illustrative trajectory optimization example.

Summary

We haven't generated a summary for this paper yet.