Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Zimmer's conjecture: Subexponential growth, measure rigidity, and strong property (T) (1608.04995v4)

Published 17 Aug 2016 in math.DS, math.DG, math.GR, and math.GT

Abstract: We prove several cases of Zimmer's conjecture for actions of higher-rank cocompact lattices on low dimensional manifolds. For example, if $\Gamma$ is a cocompact lattice in $\mathrm{Sl}(n, \mathbb R)$, $M$ is a compact manifold, and $\omega$ a volume form on $M$ we show that any homomorphism $\rho\colon \Gamma \rightarrow \mathrm{Diff}(M)$ has finite image if the dimension of $M$ is less than $n-1$ and that any homomorphism $\rho\colon \Gamma \rightarrow \mathrm{Diff}(M,\omega)$ has finite image if the dimension of $M$ is less than $n$. The key step in the proof is to show any such action has uniform subexponential growth of derivatives. This is established using ideas from the smooth ergodic theory of higher-rank abelian groups, structure theory of semisimple groups and results from homogeneous dynamics. Having established uniform subexponential growth of derivatives, we apply Lafforgue's strong property (T) to establish the existence of an invariant Riemannian metric.

Citations (45)

Summary

We haven't generated a summary for this paper yet.