Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic approximation of central binomial coefficients with rigorous error bounds (1608.04834v4)

Published 17 Aug 2016 in math.NA, cs.NA, math.CA, and math.CO

Abstract: We show that a well-known asymptotic series for the logarithm of the central binomial coefficient is strictly enveloping in the sense of P\'olya and Szeg\"o, so the error incurred in truncating the series is of the same sign as the next term, and is bounded in magnitude by that term. We consider closely related asymptotic series for Binet's function, for $\ln\Gamma(z+1/2)$, and for the Riemann-Siegel theta function, and make some historical remarks.

Summary

We haven't generated a summary for this paper yet.