Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximate transformations of bipartite pure-state entanglement from the majorization lattice (1608.04818v2)

Published 17 Aug 2016 in quant-ph

Abstract: We study the problem of deterministic transformations of an \textit{initial} pure entangled quantum state, $|\psi\rangle$, into a \textit{target} pure entangled quantum state, $|\phi\rangle$, by using \textit{local operations and classical communication} (LOCC). A celebrated result of Nielsen [Phys. Rev. Lett. \textbf{83}, 436 (1999)] gives the necessary and sufficient condition that makes this entanglement transformation process possible. Indeed, this process can be achieved if and only if the majorization relation $\psi \prec \phi$ holds, where $\psi$ and $\phi$ are probability vectors obtained by taking the squares of the Schmidt coefficients of the initial and target states, respectively. In general, this condition is not fulfilled. However, one can look for an \textit{approximate} entanglement transformation. Vidal \textit{et. al} [Phys. Rev. A \textbf{62}, 012304 (2000)] have proposed a deterministic transformation using LOCC in order to obtain a target state $|\chi\mathrm{opt}\rangle$ most approximate to $|\phi\rangle$ in terms of maximal fidelity between them. Here, we show a strategy to deal with approximate entanglement transformations based on the properties of the \textit{majorization lattice}. More precisely, we propose as approximate target state one whose Schmidt coefficients are given by the supremum between $\psi$ and $\phi$. Our proposal is inspired on the observation that fidelity does not respect the majorization relation in general. Remarkably enough, we find that for some particular interesting cases, like two-qubit pure states or the entanglement concentration protocol, both proposals are coincident.

Summary

We haven't generated a summary for this paper yet.