Rank Two Fourier-Mukai Transforms for K3 Surfaces
Abstract: We study rank two locally-free Fourier-Mukai transforms on K3 surfaces and show that they come in two distinct types according to whether the determinant of a suitable twist of the kernel is positive or not. We show that a necessary and sufficient condition on the existence of Fourier-Mukai transforms of rank 2 between the derived categories of K3 surfaces X and Y with negative twisted determinant is that Y is isomorphic to X and there must exist a line bundle with no cohomology. We use these results to prove that all reflexive K3 surfaces (including the degenerate ones) admit Fourier-Mukai transforms.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.