Papers
Topics
Authors
Recent
Search
2000 character limit reached

On Univariate Convex Regression

Published 15 Aug 2016 in stat.ME, math.ST, and stat.TH | (1608.04167v4)

Abstract: We find the local rate of convergence of the least squares estimator (LSE) of a one dimensional convex regression function when (a) a certain number of derivatives vanish at the point of interest, and (b) the true regression function is locally affine. In each case we derive the limiting distribution of the LSE and its derivative. The pointwise limiting distributions depend on the second and third derivatives at 0 of the "invelope function" of the integral of a two-sided Brownian motion with polynomial drifts. We also investigate the inconsistency of the LSE and the unboundedness of its derivative at the boundary of the domain of the covariate space. An estimator of the argmin of the convex regression function is proposed and its asymptotic distribution is derived. Further, we present some new results on the characterization of the convex LSE that may be of independent interest.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.