Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed Optimization for Client-Server Architecture with Negative Gradient Weights (1608.03866v2)

Published 12 Aug 2016 in cs.DC, cs.LG, and math.OC

Abstract: Availability of both massive datasets and computing resources have made machine learning and predictive analytics extremely pervasive. In this work we present a synchronous algorithm and architecture for distributed optimization motivated by privacy requirements posed by applications in machine learning. We present an algorithm for the recently proposed multi-parameter-server architecture. We consider a group of parameter servers that learn a model based on randomized gradients received from clients. Clients are computational entities with private datasets (inducing a private objective function), that evaluate and upload randomized gradients to the parameter servers. The parameter servers perform model updates based on received gradients and share the model parameters with other servers. We prove that the proposed algorithm can optimize the overall objective function for a very general architecture involving $C$ clients connected to $S$ parameter servers in an arbitrary time varying topology and the parameter servers forming a connected network.

Citations (4)

Summary

We haven't generated a summary for this paper yet.