Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Time Coupled Diffusion Maps (1608.03628v3)

Published 11 Aug 2016 in math.CA, cs.IT, math.IT, math.PR, and math.SP

Abstract: We consider a collection of $n$ points in $\mathbb{R}d$ measured at $m$ times, which are encoded in an $n \times d \times m$ data tensor. Our objective is to define a single embedding of the $n$ points into Euclidean space which summarizes the geometry as described by the data tensor. In the case of a fixed data set, diffusion maps (and related graph Laplacian methods) define such an embedding via the eigenfunctions of a diffusion operator constructed on the data. Given a sequence of $m$ measurements of $n$ points, we construct a corresponding sequence of diffusion operators and study their product. Via this product, we introduce the notion of time coupled diffusion distance and time coupled diffusion maps which have natural geometric and probabilistic interpretations. To frame our method in the context of manifold learning, we model evolving data as samples from an underlying manifold with a time dependent metric, and we describe a connection of our method to the heat equation over a manifold with time dependent metric.

Citations (24)

Summary

We haven't generated a summary for this paper yet.