Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A penalized method for multivariate concave least squares with application to productivity analysis (1608.03393v1)

Published 11 Aug 2016 in stat.CO and math.OC

Abstract: We propose a penalized method for the least squares estimator of a multivariate concave regression function. This estimator is formulated as a quadratic programming (QP) problem with $O(n2)$ constraints, where n is the number of observations. Computing such an estimator is a very time-consuming task, and the computational burden rises dramatically as the number of observations increases. By introducing a quadratic penalty function, we reformulate the concave least squares estimator as a QP with only non-negativity constraints. This reformulation can be adapted for estimating variants of shape restricted least squares, i.e. the monotonic-concave/convex least squares. The experimental results and an empirical study show that the reformulated problem and its dual are solved significantly faster than the original problem. The Matlab and R codes for implementing the penalized problems are provided in the paper.

Summary

We haven't generated a summary for this paper yet.